

Nome:

Matrícula:

 1^a Prova - Experimental I - 2016/01

Questão 1)[5,0] MRUV. Considere os dados na tabela ao lado para um objeto que parte do repouso $(t=0,\,x=0)$. Obtenha a aceleração do objeto GRAFICAMENTE. Apresente TODOS os cálculos necessários e TABELAS criadas.

$t(\mathbf{s})$	x (m)
0,505	0,40
0,614	0,60
0,802	0,80
0,930	1,40
1,060	1,80
1,120	2,0

Questão 2)[5,0] Na tabela abaixo estão apresentados os dados obtidos em um experimento de deformação elástica em função do peso pendurado em uma de suas extremidades. Utilize estes dados para obter, GRAFI-CAMENTE, a constante de rigidez da mola.

Obs: Considere uma gravidade $g = (10 \pm 1) \text{m/s}^2$.

$m \pm \Delta m$ (g)	$x \pm \Delta x$ (cm
$(10\pm3)\times10$	$2,0 \pm 0,2$
$(21\pm3)\times10$	$4,0 \pm 0,2$
$(29 \pm 3) \times 10$	$6,2 \pm 0,2$
$(40 \pm 3) \times 10$	$7,9 \pm 0,2$
$(38 \pm 3) \times 10$	$10,0\pm 0,2$

1

Questão 1) D primeiro passo e acomodarmos os dados em seus respectivos eixos acomodando-os de forma otimizada → Ucupando a maior extensão possível com valores de passo adequados. "Não existe um formato úmico".

(1º) Vou colocar x(t) mo eixo vertical e + mo horizontal.

dividimdo a extensão AX pela quantidade de divisões em y (considerando que saiv d. x=0 em t=0).

$$\frac{2,00 - 0,00}{45} = 0,0444 \text{ m}/div.$$

Seria bom um múmero "redondo" por divisão. Se usarmos 0,05 m/dio onde ficaria o último ponto?, ou seja, quantas divisões usariamos para chegar mos ao último ponto experimental?

testar: $0.05 \times x = 2.00$ $\Rightarrow x = 40$ divisões

Isto representa uma boa ocupação (mão é?).

→ em y voi vsar 0,05m/div

Para descobrir em quais divisões os dados estarão

$$0.05 \times 4_{\text{div}} = x \qquad \Rightarrow 4_{\text{div}} = \frac{x}{0.05}$$

Portanto x = 0.00 ma divisão y = 0

$$x = 0.40$$
 $y = 8$
 $x = 0.60$ $y = 12$
 $x = 0.80$ $y = 16$
 $x = 1.40$ $y = 16$
 $x = 1.80$ $y = 36$
 $x = 2.00$ $y = 40$

Lembrar que $\chi(t) = \frac{1}{2}\alpha t^2$ para o MRVV. Temos que limearizar a

tabela para termos um grafico linear

$$- \Im = t^2 \qquad - \chi(t) = \frac{\alpha}{2} . \Im$$

farendo	а	tabela	para	x (1)	X	t
					0,40	0,255
					0, 60	0, 377
					0,80	0, 643
					1,40	0,865
					1, 80	1, 124
					2,00	1,255

Aplicando procedimento similar para os dados de $T=t^2$, que deverão ser acomodados mo eixo horizontal:

$$\frac{1,255 - 0,255}{60 \text{ div}} = 0,01666 \cdots 3^{2} \text{ div} isão}$$

Se começarmos com t=0 ma origem, onde ficaria o primeiro ponto?

$$\Rightarrow$$
 ficaria em: 0,017 , $x_{div} = 0,255$ $\Rightarrow x_{div} \approx 15$ d.

Poderia ficar assi sem problemas pois o primeiro ponto mão esta a uma distância absurda da origem; mas podemos "deslizar o primeiro ponto para mais próximo a fim de aproveitarmos mais espação."

Vou optar por colocar I = 0,100 s ma origem. Adicionalmento vou adotar 0,02 s² por divisão. Assim, o primeiro ponto ocorrerá ma divisão Nº

$$N^{o} \frac{div_{1}}{o_{1}o_{2}} = \frac{0.255 - 0.100}{o.02} \cong 7.75 div.$$

$$N^{o} \frac{div_{2}}{o_{1}o_{2}} = \frac{0.377 - 0.100}{o.02} \cong 13.85 div.$$

$$N^{o} \frac{div_{3}}{o_{1}o_{2}} = \frac{0.643 - 0.100}{o.02} \cong 27.15 div.$$

$$N^{o} \frac{div_{4}}{o_{1}o_{2}} = \frac{0.865 - 0.100}{o.02} \cong 38.25 div.$$

$$N^{o} \frac{div_{5}}{o_{1}o_{2}} = \frac{1.124 - 0.100}{o.02} \cong 51.2 div.$$

$$N^{o} \frac{div_{6}}{o.02} = \frac{1.255 - 0.100}{o.02} \cong 57.75 div.$$

"Veja o grafico com algumas marcações de referências, escolhi de 10 em 10 divisões".

Escolhidos dois pomtos sobre a reta, calculamos o coeficiente angular da reta e igualamos à $\frac{a}{2}$.

$$m = \frac{\gamma_{\rho_1} - \gamma_{\rho_2}}{\gamma_{\rho_2} - \gamma_{\rho_2}}$$

Obter os valores:
$$\frac{1}{p_1} \approx 0.05 \frac{m}{div} \times 47 \frac{div}{2} \approx 2.35 m$$

$$\frac{1}{p_2} \approx 0.05 \frac{m}{div} \times 1 \frac{div}{2} \approx 0.05 m$$

$$\frac{1}{p_3} \approx 0.05 \times 100 + 0.02 \times 60 \approx 1.300$$

$$\times p_2 = 0.100 \, h^2$$

$$= \frac{(2,35-0,05)_{\text{m}}}{(1,300-0,10)_{\text{m}}} \approx 1,92 \text{ m/s}^2$$

Mas
$$M = \frac{a}{2}$$

$$a \simeq 2 \times 1.92 \, \text{m/s}^2$$
 $a \simeq 3.8 \, \text{m/s}^2$

"aproxima da mente

Questão 2)

Visto que os procedimentos são amalogos ao caso anterior, vou realizar os cálculos sem tanta explicação.

It stratu-se de um experimento com molas $\rightarrow \vec{F} = -K\vec{x}$. Como os deslocamentos xão lentos e estáveis, opto por utilizar o módulo de \vec{F} \rightarrow $|\vec{F}| \equiv F = Kx$.

No caso, F sera o peso; F = m, g

Refuzer a tabela com F.

100 + 30

$$F_{i} \pm \Delta F_{i} = m_{i} g \pm m_{i} g \left(\left| \frac{\Delta m_{i}}{m_{i}} \right| + \left| \frac{\Delta g}{g} \right| \right)$$

$$= \rho_{i} 10 \times 10 \pm \rho_{i} 10 \times 10 \left(\frac{\rho_{i} \Omega S}{\rho_{i} 10} + \frac{1}{10} \right)$$

$$= \left(0.10 \pm 0.04 \right) \times 10 \text{ N}$$

100 ± 30

$$F_1 \pm \Delta F_1 = (1,0 \pm 0,4) N$$

$$F_2 \pm \Delta F_2 = \left(2.1 \pm 0.5 \right) N$$

$$F_3 \pm \Delta F_3 = \left(2.9 \pm 0.6\right) N$$

Vou desconsidera-lo.

tabela com Fi

Como F= kx "em módulo"; basta construírmos o gráfico e então obtermos k pelo coeficiente angular:

Acomodação em "y". Na vertical são 45 divirões para irmos de zero — 4.0 N. Nem precisamos de cálculos para percebermos que 0,1 V/div seria uma boa escolha "veja mo gráfico"

Un pomtos em y estarão localizados em:

Analogamente:
$$\left(N^{\circ}_{-} \operatorname{div}_{2}\right) = \frac{2}{O, 1} = 21 \operatorname{div}$$

$$(N^{\circ} \operatorname{div}_{3}) = \frac{2,9}{0,1} = 29 \operatorname{div}.$$

$$\left(\frac{1}{100} \frac{1}{100} \right) = \frac{40}{0.1} = 40 \text{ div.}$$

Acomodação em x. Vamos tentar acomodar 0,079 m em 60 div.

$$= 0.100 \approx 0.00166... \text{ m/div.}$$
"vou arredondar par 0.00175"

- Verificar s. o primeiro ponto fica muito longe da origem:

$$P_{X_{\underline{a}}} = 0.00195 \times (N_{\underline{a}} \text{ div}_{\underline{a}}) = 0.020$$

$$(N_{\underline{a}} \text{ div}_{\underline{a}}) \cong 114 \text{ div}_{\underline{a}} = 0.020$$

⇒ Verificar o último:
$$Px_4 \rightarrow 0,00175 \times (N.diy) = 0.079$$

 $(N^2 div.) \approx 45 divisões \Rightarrow Parece bom'$

Unde ficação os pontos:

$$Px_{1} \Rightarrow V^{e} div_{1} = \frac{0.026}{0.0175} \approx 11.4 div.$$

$$N^{e} div_{2} = \frac{0.040}{0.00175} \approx 22.8 div.$$

$$V^{e} div_{3} = \frac{0.062}{0.00175} \approx 35.4 div.$$

$$N^{e} div_{4} = \frac{0.049}{0.00175} \approx 45 div.$$

Incertezas:

No div. = 4 divisões para a incerteza de Py.

$$\Delta P_{g_2} = \frac{o_1 5}{o_1 1} = 5 d\nu$$

$$\Delta f_{y_3}^{\rho} = \frac{0.6}{0.1} = 6 \, \text{div}.$$

Em x. "São todas iguais em 0,002m; equivalente a <u>0,002</u> ~ 1,2 div.

Ublemção do coeficiente angular \underline{m} . Para isso escolhi os pontos P_A e P_B sobre a reta principal; Vejo ma figura.

$$m = \frac{y_{PB} - y_{PA}}{x_{PB} - x_{PA}}$$
. Apenas em divisões esto da $m = \frac{(45 - 2)}{(56 - 0)}$

Como em y
$$\rightarrow 0,1 \text{ N/di}$$

e em x $\rightarrow 0,00175 \text{ m/div}$
 $\Rightarrow m = 0,76786 \times 0,1 \text{ N/m}$
 $0,00175 \text{ N/m}$

$$m \cong 43,88 \text{ N/m}$$

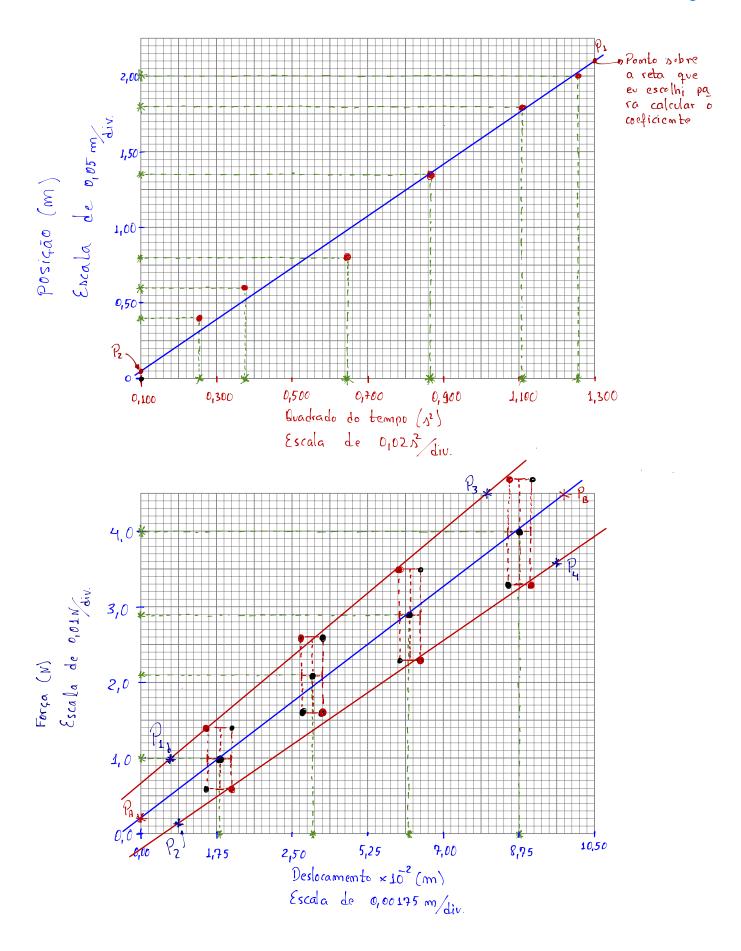
Incerteza gráfica:

$$\Delta m = \frac{m_{mox} - m_{min}}{2}$$

Unde
$$M_{max} = \frac{\gamma_{\rho_3} - \gamma_{\rho_2}}{\chi_{\rho_3} - \chi_{\rho_2}} = \frac{45 - 1}{46 - 5}$$

$$m_{min} = \frac{y_{p_4} - y_{p_1}}{x_{p_4} - x_{p_4}} \simeq \frac{36 - 10}{55 - 4}$$

$$\Delta m \simeq \frac{1.093 - 0.5098}{2}$$


(onvertendo em unidades:
$$\Delta m \approx 0.28 \times 0.1$$
 0.00175

$$\Delta m \simeq 16 \text{ N/m}$$

$$\rightarrow$$
 m \pm Am $=$ (0,44 \pm 0,16) \times 10 2 V/m

$$\Rightarrow$$
 m $\pm \Delta m = (0,4 \pm 0,2) 10^2 N/m$

$$(om \quad m = K) \qquad \qquad \Longrightarrow \qquad K \pm \Delta K = (0.4 \pm 0.2) \times 10^{2} \text{ N/m}$$

ก