

CENTRO UNIVERSITÁRIO NORTE DO ESPÍRITO SANTO Departamento de Engenharia e Ciências Exatas

10.2 Experimento 6: Transformação Isotérmica — Lei de Boyle-Mariotte.

10.2.1 Objetivos

- ✓ Encontrar o volume V_0 do sistema.
- ✓ Encontrar um ou mais valores de **K** para o ar.
- ✓ Descobrir até que ponto a lei de Boyle-Mariote é válida para o ar.

10.2.2 Referencial Teórico

A lei de Boyle-Mariotte diz que:

"Sob temperatura constante T, o volume V ocupado por certa massa de gás é inversamente proporcional à pressão P à qual o gás está submetido."

Matematicamente:

$$V \alpha \frac{1}{P} \Rightarrow PV = Constante = K$$

Esta equação é rigorosa para os gases ideais e o objetivo principal deste experimento é verificar o quão rigorosa ela é para o ar.

10.2.3 Materiais Necessários

√ 01 aparelho gaseológico Emília EQ037C.

10.2.4 Procedimento Experimental

- 1. Para a montagem inicial, observe os detalhes da Figura 1.
- 2. Com a válvula de torniquete aberta puxe o êmbolo da seringa até que 15 ml de ar estejam confinados na mesma.
- 3. Feche a válvula de torniquete.
- 4. Gire o manípulo, baixando o embolo móvel da seringa até que a pressão medida no manômetro seja de 0,6 Kgf/cm².

CENTRO UNI VERSITÁRIO NORTE DO ESPÍRITO SANTO Departamento de Engenharia e Ciências Exatas

5. Anote o volume correspondente à pressão acima.

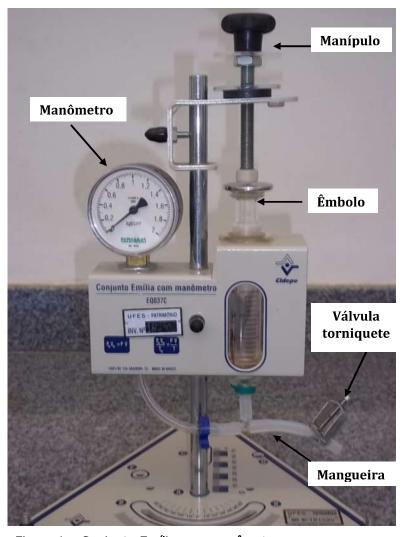


Figura 1 – Conjunto Emília com manômetro.

- 6. Espere 30 segundos para ver se há redução na pressão, o que indicaria a presença de vazamentos. Se houverem vazamentos chame o professor e/ou monitor.
- 7. Varie o volume do ar contido na seringa de 15 ml até 5 ml, com passo de 1 ml, e anote as pressões correspondentes em uma tabela semelhante à tabela abaixo. Repita mais duas vezes este procedimento.

CENTRO UNIVERSITÁRIO NORTE DO ESPÍRITO SANTO

Departamento de Engenharia e Ciências Exatas

Tabela 1: Dados medidos diretamente do experimento.

	Medida 1		Medida 2		Medida 3		Pressão total	
Medida número	Volume (ml)	Pressão (p_0) (Kgf/cm^2)	Volume (ml)	Pressão (p_0) (Kgf/cm^2)	Volume (ml)	Pressão (p_0) (Kgf/cm^2)	p_t = p_{0m} + (0,967842 \pm 0,000001) $kgf/cm2$	
1								
2								
3								
4								
5								
6								
7								
8								
9								
10								

- 8. Obtenha os valores médios do volume e pressão, com suas respectivas incertezas (desvio padrão). Some o valor obtido da pressão média à atmosférica $(0,967842 \pm 0,000001) \text{ kgf/cm}^2$.
- 9. Acrescente na tabela uma linha com a medida do volume feita no item 4 (nada se cria, nada se destrói, tudo se aproveita).
- 10. A partir de PV = cte deduza a equação $V_i = \frac{\Delta V(p_i + \Delta p)}{\Delta p}$ onde V_i e p_i são, respectivamente, o volume e a pressão antes de uma dada compressão isotérmica,

 ΔV é a variação de volume nesta compressão e Δp a variação de pressão.

11. Tomando os dados da terceira linha da tabela acima, e de três outras linhas, calcule três valores para V_{ij} utilize a média como valor adotado e utilize o maior desvio como incerteza. Este valor corresponde ao volume total de ar contido no sistema quando a

CENTRO UNIVERSITÁRIO NORTE DO ESPÍRITO SANTO

Departamento de Engenharia e Ciências Exatas

seringa contém 13.0 ± 0.5 ml. Subtraindo V_i de 13.0 ± 0.5 ml é possível obter o volume de ar dentro da tubulação e do manômetro. Utilize esta informação para obter o volume V_{0i} , ou seja, o volume total de ar guardado no sistema logo que a válvula torniquete foi fechada.

12. Utilizando o valor de V_0 , dos volumes e das pressões preencha a tabela 2 (lembre-se de acrescentar as incertezas):

Tabela 2: Valores calculados.

Medida número	Volume médio V_0 (ml)	Pressão total (Kgf/cm²)	PV	$\frac{1}{V}$
1	V_0			
2	V ₀ -1ml			
3	V₀-2ml			
4	V ₀ -3ml			
5	V ₀ -4ml			
6	V₀-5ml			
7	V ₀ -6ml			
8	V₀-7mI			
9	V ₀ -8ml			
10	V₀-9ml			

CENTRO UNI VERSITÁRIO NORTE DO ESPÍRITO SANTO Departamento de Engenharia e Ciências Exatas

10.2.5 O que Incluir no Relatório do Experimento

- PV é mesmo constante para o ar? Justifique usando os valores medidos e calculados.
- Figure 3. Gráfico de P versus $\frac{1}{V}$.
- > Calcule e interprete fisicamente o valor da inclinação da curva obtida no gráfico de P versus $\frac{1}{V}$.
- ightharpoonup Extrapole, no gráfico, o valor de $\frac{1}{V}$ para uma tendência a zero e tire conclusões.
- Compare o valor da inclinação da curva de 1/V com a média do valor de PV obtido para quatro medidas.
- > Comente o intervalo de validade da lei de Boyle para os gases ideais. Ela é válida para o ar?